If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+31x+2=0
a = -16; b = 31; c = +2;
Δ = b2-4ac
Δ = 312-4·(-16)·2
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-33}{2*-16}=\frac{-64}{-32} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+33}{2*-16}=\frac{2}{-32} =-1/16 $
| 5/8x+2=17 | | 53=8-3n | | 2.3(x-6)=12 | | 1/6(12z+18)=2z+-3 | | -0.10(90)+0.65x=0.05(x-12) | | 6(5+a)=108 | | 10h–-3h+-20=6 | | 6p-40=10p+8 | | n/4=n+5/6 | | 7x-12+5x+12=90 | | 2.6x-5.46=6.5 | | 250x=50x+7060 | | 40-5c=30 | | 11a-3(5+2a)=85 | | 7x-9x=2=5x-6 | | 3/2y-1/3=1/6(5y-1) | | x/20=20/10 | | 6r=-36 | | -60=20k | | 5/9(f-32)=-25 | | 7y-12+5y+12=90 | | 3+4(x-5)=6-2(x-3) | | (2x+10)=17(4x-3) | | 900+950+5x=700+500+10x | | 140=(x+4)(x+9) | | 1/6(12z+18)=2z-3 | | 5(6x-1)=49 | | 4/75=x/250 | | 2/3+(9x-6)=4x+10 | | 21x-12x=9 | | x-155+5=180 | | 3x2-196=217x |